Down-regulation of seladin-1 increases BACE1 levels and activity through enhanced GGA3 depletion during apoptosis

J Biol Chem. 2009 Dec 4;284(49):34433-43. doi: 10.1074/jbc.M109.036202. Epub 2009 Oct 8.

Abstract

Seladin-1 is a neuroprotective protein selectively down-regulated in brain regions affected in Alzheimer disease (AD). Seladin-1 protects cells against beta-amyloid (Abeta) peptide 42- and oxidative stress-induced apoptosis activated by caspase-3, a key mediator of apoptosis. Here, we have employed RNA interference to assess the molecular effects of seladin-1 down-regulation on the beta-secretase (BACE1) function and beta-amyloid precursor protein (APP) processing in SH-SY5Y human neuroblastoma cells in both normal and apoptotic conditions. Our results show that approximately 60% reduction in seladin-1 protein levels, resembling the decrease observed in AD brain, did not significantly affect APP processing or Abeta secretion in normal growth conditions. However, under apoptosis, seladin-1 small interfering RNA (siRNA)-transfected cells showed increased caspase-3 activity on average by 2-fold when compared with control siRNA-transfected cells. Increased caspase-3 activity coincided with a significant depletion of the BACE1-sorting protein, GGA3 (Golgi-localized gamma-ear-containing ADP-ribosylation factor-binding protein), and subsequently augmented BACE1 protein levels and activity. Augmented BACE1 activity in turn correlated with the enhanced beta-amyloidogenic processing of APP and ultimately increased Abeta production. These adverse changes associated with decreased cell viability in seladin-1 siRNA-transfected cells under apoptosis. No changes in GGA3 or BACE1 levels were found after seladin-1 knockdown in normal growth conditions. Collectively, our results suggest that under stress conditions, reduced seladin-1 expression results in enhanced GGA3 depletion, which further leads to augmented post-translational stabilization of BACE1 and increased beta-amyloidogenic processing of APP. These mechanistic findings related to seladin-1 down-regulation are important in the context of AD as the oxidative stress-induced apoptosis plays a key role in the disease pathogenesis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptor Proteins, Vesicular Transport / metabolism*
  • Amyloid Precursor Protein Secretases / biosynthesis*
  • Amyloid beta-Peptides / chemistry
  • Apoptosis*
  • Aspartic Acid Endopeptidases / biosynthesis*
  • Cell Line, Tumor
  • Culture Media, Conditioned / metabolism
  • Down-Regulation
  • Gene Expression Regulation*
  • Humans
  • Microscopy, Confocal / methods
  • Models, Biological
  • Nerve Tissue Proteins / biosynthesis*
  • Oxidative Stress
  • Oxidoreductases Acting on CH-CH Group Donors / biosynthesis*
  • Protein Structure, Tertiary
  • Transfection

Substances

  • Adaptor Proteins, Vesicular Transport
  • Amyloid beta-Peptides
  • Culture Media, Conditioned
  • GGA adaptor proteins
  • Nerve Tissue Proteins
  • Oxidoreductases Acting on CH-CH Group Donors
  • DHCR24 protein, human
  • Amyloid Precursor Protein Secretases
  • Aspartic Acid Endopeptidases
  • BACE1 protein, human