Context: P450 oxidoreductase (POR) deficiency causes disordered steroidogenesis; severe mutations cause genital ambiguity in both sexes plus the Antley-Bixler skeletal malformation syndrome, whereas mild mutations can cause adult infertility.
Objective: We describe four patients with POR deficiency and identify and characterize the activities of their mutations. A 46,XY male with micropenis and two 46,XX female infants with genital ambiguity presented with skeletal malformations, and a 46,XX adolescent presented with primary amenorrhea, elevated 17alpha-hydroxyprogesterone, and low sex steroids.
Methods: The coding regions of the POR gene were sequenced, and the identified mutations were recreated in human POR cDNA expression vectors lacking 27 N-terminal residues. POR and human P450c17 were expressed in bacteria. POR activity was measured by four assays: reduction of cytochrome c, oxidation of reduced nicotinamide adenine dinucleotide phosphate, and support of the 17alpha-hydroxylase and 17,20 lyase activities of P450c17.
Results: All four patients were compound heterozygotes for POR mutations, including five novel mutations: L577R, N185K, delE217, and frameshift mutations 1363delC and 697-698insGAAC. N185K and delE217 lacked measurable activity in the assays based on P450c17 but retained partial activity in the assays based on cytochrome c. As assessed by V(max)/Km, L577R supported 46% of 17alpha-hydroxylase activity but only 27% of 17,20 lyase activity. Computational modeling of these novel mutants revealed the structural basis for their reduced or absent activities.
Conclusion: These patients illustrate the broad clinical spectrum of POR deficiency, including amenorrhea and infertility as the sole manifestation. POR assays based on P450c17 correlate well with hormonal and clinical phenotypes.