We employ all-electron ab initio time-dependent density functional theory based method to calculate the long-range dipole-dipole dispersion coefficient, namely, the van der Waals (vdW) coefficient (C(6)) between fullerenes and finite-length carbon nanotubes as well as between these structures and different small molecules. Our aim is to accurately estimate the strength of the long-range vdW interaction in terms of the C(6) coefficients between these systems and also compare these values as a function of shape and size. The dispersion coefficients are obtained via Casimir-Polder relation. The calculations are carried out with the asymptotically correct exchange-correlation potential-the statistical average of orbital potential. It is observed from our calculations that the C(6) coefficients of the carbon nanotubes increase nonlinearly with length, which implies a much stronger vdW interaction between the longer carbon nanostructures compared with the shorter ones. Additionally, it is found that the values of C(6) and polarizability are about 40%-50% lower for the carbon cages when compared with the results corresponding to the quasi-one-dimensional nanotubes with equivalent number of atoms. From our calculations of the vdW coefficients between the small molecules and the carbon nanostructures, it is observed that for H(2), the C(6) value is much larger compared with that of He. It is found that the rare gas atoms have very low values of vdW coefficient with the carbon nanostructures. In contrast, it is found that other gas molecules, including the ones that are environmentally important, possess much higher C(6) values. Carbon tetrachloride as well as chlorine molecule show very high C(6) values with themselves as well as with the carbon nanostructures. This is due to the presence of the weakly bound seven electrons in the valence state for the halogen atoms, which makes these compounds much more polarizable compared with the others.