Objective: To determine if the levels of circulating myeloid-derived suppressor cells increase with progression of prostate cancer (PCa); to determine if such cells could contribute to the relative inefficiency of PCa immunotherapy.
Materials and methods: We analyzed peripheral blood mononuclear cells isolated from untreated PCa patients (uPCa; N = 18; mean age +/- SD: 72.1 +/- 6.9 years), tPCa (N = 22; 72.8 +/- 9.8 years) and age matched controls (AMC; N = 12; 68.8 +/- 7.5 years). We quantified surface marker phenotype, differentiation potential, effects on T cell proliferation and intracellular cytokines.
Results: We observed an unexpectedly high percentage of a type of myeloid-derived suppressor cells, CD14(+)HLA-DR(low/-) monocytes, in tPCa (30.7 +/- 15.0% of CD14(+) cells) relative to AMC (4.1 +/- 6.5%, P < 0.0001) and uPCa (10.6 +/- 14.3%, P = 0.0001). The levels of CD14(+) HLA-DR(low/-) cells were significantly correlated with circulating PSA levels and treatment with LHRH-agonist leuprolide in combination with either an antiandrogen or dexamethasone. Monocytes from tPCa inhibited autologous T cell proliferation statistically significantly more effectively than AMC monocytes and were defective in their ability to differentiate into phenotypically mature dendritic cells. Isolated CD14(+)HLA-DR(low/-) cells expressed higher levels of intracellular interleukin-10 and suppressed T cell proliferation more effectively than isolated CD14(+)HLA-DR(+) cells.
Conclusions: This is the first report of CD14(+) cells exhibiting reduced expression of HLA-DR molecules in PCa patients. These cells suppress immune cell function in vitro and, plausibly, in vivo, a finding that must be factored into the design of immunotherapy protocols for PCa patients.
Prostate 70: 443-455, 2010. (c) 2009 Wiley-Liss, Inc.