Spleen cells of BALB/c mice bearing a syngeneic CSA1M fibrosarcoma were treated with anti-Thy-1.2 antibody plus C, yielding a T cell-depleted, APC-containing fraction. The APC-containing fraction was first tested for its capacity to present exogenous modified-self or another tumor (Meth A) Ag after in vitro pulsing. The results showed comparable Ag-presenting capacities to those obtained by APC-containing fraction from normal spleen cells, indicating that APC function is not affected in tumor-bearing mice. We next examined whether APC from CSA1M-bearing mice bind endogenously generated CSA1M tumor Ag onto its surfaces to stimulate tumor-specific T cells. Five rounds of inoculation of APC-containing fraction from CSA1M-bearing mice without further in vitro pulsing resulted in the induction of potent anti-CSA1M immune resistance. The involvement of anti-CSA1M T cells in the induction of anti-CSA1M immunity was excluded by the fact that the in vivo immunity was excluded by the fact that the in vivo immunity was delivered by Thy-1+ cell-depleted, but not by Thy-1+ cell-enriched fractions of spleen cells from CSA1M-bearing mice. Moreover, the failure of Sephadex G10-passed spleen cells to deliver anti-CSA1M resistance demonstrated the absolute requirement of APC for inducing the in vivo immunity. Finally, this in vivo resistance was found to be tumor specific, because APC fractions from CSA1M-bearing and Meth A-bearing BALB/c mice induced immune resistance selective against the corresponding tumor cell challenge. These results indicate that APC from tumor-bearing hosts can not only exert unaffected APC function against exogenous Ag, but also function to present tumor Ag generated endogenously in the tumor-bearing state and to produce tumor-specific immunity in vivo.