Objectives: We investigated the extent and nature of myocardial damage by using cardiovascular magnetic resonance (CMR) in relation to different time-to-reperfusion intervals.
Background: Previous studies evaluating the influence of time to reperfusion on infarct size (IS) and myocardial salvage in patients with ST-segment elevation myocardial infarction (STEMI) have yielded conflicting results.
Methods: Seventy patients with STEMI successfully treated with primary percutaneous coronary intervention within 12 h from symptom onset underwent CMR 3 +/- 2 days after hospital admission. Patients were subcategorized into 4 time-to-reperfusion (symptom onset to balloon) quartiles: < or =90 min (group I, n = 19), >90 to 150 min (group II, n = 17), >150 to 360 min (group III, n = 17), and >360 min (group IV, n = 17). T2-weighted short tau inversion recovery and late gadolinium enhancement CMR were used to characterize reversible and irreversible myocardial injury (area at risk and IS, respectively); salvaged myocardium was defined as the normalized difference between extent of T2-weighted short tau inversion recovery and late gadolinium enhancement.
Results: Shorter time-to-reperfusion (group I) was associated with smaller IS and microvascular obstruction and larger salvaged myocardium. Mean IS progressively increased overtime: 8% (group I), 11.7% (group II), 12.7% (group III), and 17.9% (group IV), p = 0.017; similarly, MVO was larger in patients reperfused later (0.5%, 1.5%, 3.7%, and 6.6%, respectively, p = 0.047). Accordingly, salvaged myocardium markedly decreased when reperfusion occurred >90 min of coronary occlusion (8.5%, 3.2%, 2.4%, and 2.1%, respectively, p = 0.004).
Conclusions: In patients with STEMI treated with primary percutaneous coronary intervention, time to reperfusion determines the extent of reversible and irreversible myocardial injury assessed by CMR. In particular, salvaged myocardium is markedly reduced when reperfusion occurs >90 min of coronary occlusion.