Glioblastoma multiforme (GBM) is the most common and lethal primary malignant brain tumor. The traditional treatments for GBM, including surgery, radiation, and chemotherapy, only modestly improve patient survival. Therefore, immunotherapy has emerged as a novel therapeutic modality. Immunotherapeutic strategies exploit the immune system's ability to recognize and mount a specific response against tumor cells, but not normal cells. Current immunotherapeutic approaches for glioma can be divided into 3 categories: immune priming (active immunotherapy), immunomodulation (passive immunotherapy), and adoptive immunotherapy. Immune priming sensitizes the patient's immune cells to tumor antigens using various vaccination protocols. In the case of immunomodulation, strategies are aimed at reducing suppressive cytokines in the tumor microenvironment or using immune molecules to specifically target tumor cells. Adoptive immunotherapy involves harvesting the patient's immune cells, followed by ex vivo activation and expansion before reinfusion. This article provides an overview of the interactions between the central nervous system and the immune system, and discusses the challenges facing current immunotherapeutic strategies.