African American (AA) men with prostate cancer (PCa) have worse disease, with a higher incidence, younger age and more advanced disease at diagnosis, and a worse prognosis, compared to Caucasian (CA) men. In addition to socioeconomic factors and lifestyle differences, molecular alterations contribute to this discrepancy. In this review, we summarize molecular genetics research results interrelated with the biology of PCa racial disparity. Androgen and androgen receptor (AR) pathways have long been associated with prostate growth. Racial differences have also been found among variants of the genes of the enzymes involved in androgen biosynthesis and metabolism, such as SRD5A2, CYP17, and CYP3A4. The levels of expression and CAG repeat length of AR also show racial divergence and may be critical molecular alterations for racial disparity. Growth factors and their receptors, which promote cancer cell growth, are another potential cause of the disparity; both EGFR and EPHB2, two of the most studied receptors, show interethnic differences. Differences have also been found among genes regulating cell apoptosis, such as BCL2, which is increased in PCa in the AA population. Recent developments in genetics, proteomics, and genomics, among other molecular biotechnologies, will greatly aid the advancement of translational research on PCa racial disparity, hopefully culminating in the discovery of novel mechanisms of disease, in addition to prognostic markers and novel therapeutic approaches.
Keywords: CYP17; CYP3A4; Prostate cancer; SRD5A2; disparity; incidence; molecular genetics; prognosis.