In this work, we theoretically investigated the friction mechanism of hexagonal MoS(2) (a well-known lamellar compound) using a computational chemistry method. First, we determined several parameters for molecular dynamics simulations via accurate quantum chemistry calculations and MoS(2) and MoS(2-x)O(x) structures were successfully reproduced. We also show that the simulated Raman spectrum and peak shift on X-ray diffraction patterns were in good agreement with those of experiment. The atomic interactions between MoS(2) sheets were studied by using a hybrid quantum chemical/classical molecular dynamics method. We found that the predominant interaction between two sulfur layers in different MoS(2) sheets was Coulombic repulsion, which directly affects the MoS(2) lubrication. MoS(2) sheets adsorbed on a nascent iron substrate reduced friction further due to much larger Coulombic repulsive interactions. Friction for the oxygen-containing MoS(2) sheets was influenced by not only the Coulomb repulsive interaction but also the atomic-scale roughness of the MoS(2)/MoS(2) sliding interface.