Generating sequences of multiple saccadic eye movements allows us to search our environment quickly and efficiently. Although the frontal eye field cortex (FEF) has been linked to target selection and making saccades, little is known about its role in the control and performance of the sequences of saccades made during self-guided visual search. We recorded from FEF cells while monkeys searched for a target embedded in natural scenes and examined the degree to which cells with visual and visuo-movement activity showed evidence of target selection for future saccades. We found that for about half of these cells, activity during the fixation period between saccades predicted the next saccade in a sequence at an early time that precluded selection based on current visual input to a cell's response field. In addition to predicting the next saccade, activity during the fixation prior to two successive saccades also predicted the direction and goal of the second saccade in the sequence. We refer to this as advanced predictive activity. Unlike activity indicating the upcoming saccade, advanced predictive activity occurred later in the fixation period, mirroring the order of the saccade sequence itself. The remaining cells without advanced predictive activity did not predict future saccades but reintroduced the signal for the upcoming saccade at an intermediate time in the fixation period. Together these findings suggest that during natural visual search the timing of FEF cell activity is consistent with a role in specifying targets for one or more future saccades in a search sequence.