Actinin-associated LIM protein (ALP) and Enigma are two subfamilies of Postsynaptic density 95, discs large and zonula occludens-1 (PDZ)-Lin-11, Isl1 and Mec-3 (LIM) domain containing proteins. ALP family members have one PDZ and one LIM domain, whereas Enigma proteins contain one PDZ and three LIM domains. Four ALP and three Enigma proteins have been identified in mammals, each having multiple splice variants and unique expression patterns. Functionally, these proteins bind through their PDZ domains to alpha-actinin and bind through their LIM domains or other internal protein interaction domains to other proteins, including signaling molecules. ALP and Enigma proteins have been implicated in cardiac and skeletal muscle structure, function and disease, neuronal function, bipolar disorder, tumor growth, platelet and epithelial cell motility and bone formation. This review will focus on recent advances in the biological roles of ALP/Enigma PDZ-LIM domain proteins in cardiac muscle and provide insights into mechanisms by which mutations in these proteins are related to human cardiac disease.