The infarcted cardiac microenvironment cannot selectively promote embryonic stem cell differentiation into cardiomyocytes

Cardiovasc Pathol. 2011 Mar-Apr;20(2):77-83. doi: 10.1016/j.carpath.2009.12.003. Epub 2010 Feb 8.

Abstract

Postinfarct congestive heart failure is one of the leading causes of morbidity and mortality in industrialized countries. It is controversial whether embryonic stem cells are feasible sources for in situ cardiac regeneration in infarcted hearts. In order to investigate whether the infarcted cardiac microenvironment could selectively promote embryonic stem cell differentiation into cardiomyocytes, we assessed the cardiac differentiation potential of mouse embryonic stem cells (mESCs) injected into normal (n=16) or acutely infarcted rat hearts (n=18). We found that the transplanted 4',6-diamidino-2-phenylindole (DAPI)-labeled mESCs were able to survive and form stable intracardiac grafts both in normal and infarcted hearts, along with macrophages found specifically in the engraftment area. Two to four weeks after mESC transplantation, we found that more DAPI-positive mESCs differentiated into cardiomyocytes, marked by cardiac troponin T (cTnT), in normal than those in infarcted hearts (2.67±0.79% vs. 1.06±0.52%, P<.01). However, the discrepancy between the percentage of DAPI-positive cells that express cTnT in normal and that in infarcted hearts was diminished after 4 weeks (1.17±0.98% vs. 1.07±1.02%, P>.05), when the transverse striation began to present in the mESCs-derived cardiomyocytes. In addition, mESCs differentiated into vimentin-positive cardiac fibroblasts in normal and infracted hearts. Our results indicated that transplanted mESCs cannot only survive but differentiate into cardiomyocytes in infarcted rat hearts. However, the infarcted cardiac microenvironment cannot selectively promote mESCs differentiation into cardiomyocytes.

MeSH terms

  • Animals
  • Cell Differentiation / physiology*
  • Embryonic Stem Cells / cytology*
  • Embryonic Stem Cells / transplantation*
  • Female
  • Fibroblasts / cytology
  • Fluorescent Antibody Technique
  • Mice
  • Myocardial Infarction / pathology*
  • Myocardial Infarction / therapy
  • Myocytes, Cardiac / cytology*
  • Rats
  • Rats, Sprague-Dawley
  • Stem Cell Transplantation
  • Transplantation, Heterologous