A comparison of echocardiography to invasive measurement in the evaluation of pulmonary arterial hypertension in a rat model

Int J Cardiovasc Imaging. 2010 Jun;26(5):509-18. doi: 10.1007/s10554-010-9596-1. Epub 2010 Feb 7.

Abstract

Pulmonary arterial hypertension (PAH) is a life-threatening condition characterized by progressive elevation in pulmonary artery pressure (PAP) and total pulmonary vascular resistance (TPVR). Recent advances in imaging techniques have allowed the development of new echocardiographic parameters to evaluate disease progression. However, there are no reports comparing the diagnostic performance of these non-invasive parameters to each other and to invasive measurements. Therefore, we investigated the diagnostic yield of echocardiographically derived TPVR and Doppler parameters of PAP in screening and measuring the severity of PAH in a rat model. Serial echocardiographic and invasive measurements were performed at baseline, 21 and 35 days after monocrotaline-induction of PAH. The most challenging echocardiographic derived TPVR measurement had good correlation with the invasive measurement (r = 0.92, P < 0.001) but also more simple and novel parameters of TPVR were found to be useful although the non-invasive TPVR measurement was feasible in only 29% of the studies due to lack of sufficient tricuspid valve regurgitation. However, echocardiographic measures of PAP, pulmonary artery flow acceleration time (PAAT) and deceleration (PAD), were measurable in all animals, and correlated with invasive PAP (r = -0.74 and r = 0.75, P < 0.001 for both). Right ventricular thickness and area correlated with invasive PAP (r = 0.59 and r = 0.64, P < 0.001 for both). Observer variability of the invasive and non-invasive parameters was low except in tissue-Doppler derived isovolumetric relaxation time. These non-invasive parameters may be used to replace invasive measurements in detecting successful disease induction and to complement invasive data in the evaluation of PAH severity in a rat model.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Analysis of Variance
  • Animals
  • Blood Flow Velocity
  • Cardiac Catheterization
  • Disease Models, Animal
  • Echocardiography, Doppler / methods*
  • Female
  • Hypertension, Pulmonary / diagnostic imaging*
  • Hypertension, Pulmonary / physiopathology
  • Monocrotaline
  • Predictive Value of Tests
  • ROC Curve
  • Rats
  • Rats, Nude
  • Sensitivity and Specificity
  • Tricuspid Valve Insufficiency / diagnostic imaging
  • Tricuspid Valve Insufficiency / physiopathology
  • Vascular Resistance

Substances

  • Monocrotaline