In this paper, we present a tissue metabonomic method with an optimized extraction procedure followed by instrumental analysis with gas chromatography/time-of-flight mass spectrometry (GC/TOFMS) and spectral data analysis with multivariate statistics. Metabolite extractions were carried out using three solvents: chloroform, methanol, and water, with design of experiment (DOE) theory and multivariate statistical analysis. A two-step metabolite extraction procedure was optimized using a mixed solvent of chloroform-methanol-water (1:2:1, v/v/v) and then followed by methanol alone. This approach was subsequently validated using standard compounds and liver tissues. Calibration curves were obtained in the range of 0.50-125.0mug/mL for standards and 0.02-0.25g/mL acceptable for liver tissue samples. For most of the metabolites investigated, relative standard deviations (RSD) were below 10% within a day (reproducibility) and below 15% within a week (stability). Rat liver tissues of carbon tetrachloride-induced acute liver injury models (n=10) and healthy control rats (n=10) were analyzed which demonstrated the applicability of the developed procedure for the tissue metabonomic study.
Copyright (c) 2010 Elsevier B.V. All rights reserved.