Nontyphoidal salmonellosis is the second most frequently reported zoonotic disease in the European Union (EU) and is considered to be a major threat to human health worldwide. The most reported Salmonella serovar in the EU is S. Enteritidis, mainly associated with egg contamination, followed by S. Typhimurium, with the latter being the most predominant serovar isolated from pork. These findings suggest that reducing the Salmonella contamination in the pork production might be a good strategy to prevent and control human salmonellosis in the EU. Recently, a quantitative microbial risk assessment (QMRA) has been developed to assess the risks for human salmonellosis due to home consumption of fresh minced pork meat in Belgium. The newly developed risk model is called the METZOON model. In the current study, the METZOON model was used to evaluate the effectiveness of different hypothetical Salmonella mitigation strategies implemented at different stages of the minced pork production and consumption chain by means of a scenario analysis. To efficiently evaluate the mitigation strategies, model results were obtained by running simulations using the randomized complete block design. The effectiveness of a mitigation strategy is expressed using point and interval estimates of the effect size for dependent observations, expressed as the standardized difference in population means. The results indicate that the most effective strategies are taken during the slaughter processes of polishing, evisceration, and chilling, and during postprocessing, whereas interventions in the primary production and at the beginning of the slaughter process seem to have only a limited effect. Improving consumer awareness is found to be effective as well.