The role of parallel diffusion-weighted imaging and apparent diffusion coefficient (ADC) map values for evaluating breast lesions: preliminary results

Acad Radiol. 2010 Apr;17(4):456-63. doi: 10.1016/j.acra.2009.12.004.

Abstract

Rationale and objectives: To evaluate the feasibility of using diffusion-weighted imaging (DWI) with an array spatial sensitivity encoding technique (ASSET) and apparent diffusion coefficient (ADC) map values with different b values to distinguish benign and malignant breast lesions.

Materials and methods: Fifty-six female patients with 60 histologically proven breast lesions and 20 healthy volunteers underwent magnetic resonance imaging. A subset of normal volunteers (n = 7) and patients (n = 16) underwent both conventional DWI and ASSET-DWI, and the image quality between the two methods was compared. Finally, ASSET-DWI with b = 0, 600 s/mm(2), and b = 0, 1000 s/mm(2), were compared for their ability to distinguish benign and malignant breast lesions.

Results: The ASSET-DWI method had less distortion, fewer artifacts, and a lower acquisition time than other methods. No significant difference (P > .05) was detected in ADC map values between ASSET-DWI and conventional DWI. For ASSET-DWI, the sensitivity of ADC values for malignant lesions with a threshold of less than 1.44 x 10(-3) mm(2)/s (b = 600 s/mm(2)) and 1.18 x 10(-3) mm(2)/s (b = 1000 s/mm(2)) was 80% and 77.5%, respectively. The specificity of both groups was 95%.

Conclusion: ASSET-DWI evaluation of breast tissue offers decreased distortion, susceptibility to artifacts, and acquisition time relative to other methods. The use of ASSET-DWI is feasible with b values ranging from 600 to 1000 s/mm(2) and provides increased specificity compared to other techniques. Thus, the ADC value of a breast lesion can be used to further characterize malignant lesions from benign ones.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Adolescent
  • Adult
  • Aged
  • Aged, 80 and over
  • Algorithms*
  • Breast Neoplasms / diagnosis*
  • Diffusion Magnetic Resonance Imaging / methods*
  • Female
  • Humans
  • Image Enhancement / methods
  • Image Interpretation, Computer-Assisted / methods*
  • Middle Aged
  • Pilot Projects
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Young Adult