Atherosclerosis is a chronic inflammatory disease of middle sized and large vessels with sequelae comprising the most frequent causes of death in the Western world. Modern imaging modalities are being introduced for the study of atherosclerosis with emphasis on the detection of vulnerable plaques. The hybrid imaging method PET/CT presents advantages for the localization of vulnerable plaques based on the uptake of various molecular imaging agents indicative of inflammatory processes. Using semiquantitative image analysis fluorodeoxyglucose (FDG) uptake in large peripheral vessels has been identified in a series of 21 patients, who were scanned first with the previous generation of PET/CT scanner and subsequently with a new generation apparatus, after a mean interval of 6.5 months. The mean ratio of FDG uptake in the walls of eight large vessels to the blood-pool activity (TBR) was nearly identical in the two PET/CT sessions (TBR(1) 1.26 versus TBR(2) 1.28; p=n.s.), indicating independence of the TBR endpoint from the particular instrumentation.