T cell receptor-stimulated NF-kappaB activation requires CARMA1 and is negatively regulated by the deubiquitinase CYLD. Recent studies suggest that CARMA1 regulates regulatory T cell (Treg) development, although the role of NF-kappaB in this event is incompletely understood. We show that CYLD deficiency causes constitutive NF-kappaB activation in thymocytes, which is associated with enhanced frequency of Treg cells. The NF-kappaB activation in CYLD-deficient thymocytes is independent of CARMA1, because the NF-kappaB activation was also detected in CYLD/CARMA1 double knock-out thymocytes. Interestingly, although loss of CYLD causes NF-kappaB activation in the CARMA1-deficient thymocytes, the CYLD deficiency fails to rescue the defect of CARMA1 knock-out mice in Treg development. Furthermore, inhibition of canonical NF-kappaB by an IkappaBalpha transgene only partially inhibits Treg development. We demonstrate that CARMA1 regulates IL-2 receptor signaling and controls the IL-2-stimulated maturation of Treg precursors to mature Tregs. These results suggest that the role of CARMA1 in Treg regulation involves both NF-kappaB activation and IL-2 receptor signaling.