Kinetics of use-dependent ventricular conduction slowing by antiarrhythmic drugs in humans

Circulation. 1991 Jun;83(6):1987-94. doi: 10.1161/01.cir.83.6.1987.

Abstract

Background: Rate-dependent conduction slowing by class I antiarrhythmic agents has clinically important consequences. Class I drugs are known to produce use-dependent sodium channel blockade. If rate-dependent conduction slowing by class I agents is due to sodium channel blocking actions, the kinetics of conduction slowing should be similar to those of depression of sodium current indexes in vitro. The purpose of the present investigation was to study the onset time course of ventricular conduction slowing caused by a variety of class I agents in humans.

Methods and results: Twenty-seven patients undergoing electrophysiological evaluation for antiarrhythmic therapy were studied. Changes in QRS duration at initiation of ventricular pacing at cycle lengths of 400 and 500 msec were used to evaluate the kinetics of drug action. Mean time constants for each drug were similar to values for Vmax depression reported in vitro studies: flecainide, 24.9 +/- 11.6 beats in eight patients (versus 34.5 beats reported for Vmax block); propafenone, 17.8 +/- 6.9 beats in five patients (versus 8.4-20.8 beats); quinidine, 7.0 +/- 2.4 beats in six patients (versus 5.6-6.2 beats); and amiodarone, 3.6 +/- 2.0 beats for eight patients (versus 3.0 beats). Time constants were significantly different among the various drugs tested (p = 0.0002 at a cycle length of 400 msec; p = 0.002 at 500 msec), and there was a strong correlation (r = 0.89, p less than 0.0001) between values obtained at a cycle length of 400 msec and those at a cycle length of 500 msec. No rate-dependent changes in QRS duration were seen at onset of ventricular pacing among eight age- and disease-matched control patients not taking class I antiarrhythmic drugs, including three patients subsequently showing such changes during type I antiarrhythmic drug therapy.

Conclusions: We conclude that class I agents produce use-dependent QRS prolongation in humans with characteristic kinetics for each agent that are similar to the kinetics of Vmax depression in vitro. These results suggest that rate-dependent ventricular conduction slowing by antiarrhythmic drugs in humans is due to use-dependent sodium channel blockade.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Arrhythmia Agents / pharmacology*
  • Cardiac Pacing, Artificial
  • Electrocardiography
  • Heart Conduction System / drug effects*
  • Heart Rate
  • Humans
  • Kinetics
  • Time Factors
  • Ventricular Function / drug effects*

Substances

  • Anti-Arrhythmia Agents