The roles of bioactive sphingolipids in resveratrol-induced apoptosis in HL60: acute myeloid leukemia cells

J Cancer Res Clin Oncol. 2011 Feb;137(2):279-86. doi: 10.1007/s00432-010-0884-x. Epub 2010 Apr 18.

Abstract

Purpose: Acute promyelocytic leukemia results from a translocation between 15 and 17 chromosomes that produce PML/RARα fusion protein. PML/RARα inhibits differentiation of myeloid precursor cells at stem cell level. Resveratrol is a phytoalexin that exerts cytotoxic effects on cancer cells. Ceramides have crucial roles in cell growth, proliferation, differentiation, drug resistance, and apoptosis. In this study, we examined the possible cytotoxic effects of resveratrol on acute myeloid leukemia cells and determined the roles of ceramide-metabolizing genes in resveratrol-induced apoptosis, in addition to investigating the possibility of increasing the sensitivity of HL60 cells to resveratrol by manipulating sphingolipids.

Methods: Cytotoxic effects of resveratrol, C8:ceramide, PDMP, and SK-1 inhibitor were determined by XTT cell proliferation assay. Changes in caspase-3 enzyme activity and mitochondrial membrane potential (MMP) were measured using caspase-3 colorimetric assay and JC-1 MMP detection kit. Expression levels of ceramide-metabolizing genes were examined by RT-PCR.

Results: The results revealed that manipulations of ceramide metabolism toward generation or accumulation of apoptotic ceramides increased apoptotic effects of resveratrol in HL60 cells, synergistically. More importantly, gene expression analyses revealed that resveratrol-induced apoptosis via increasing expression levels of ceramide-generating genes and decreasing expression levels of antiapoptotic sphingosine kinase-1 and glucosylceramide synthase genes.

Conclusion: These results showed for the first time that increasing intracellular levels of ceramides by biochemical approaches has also increased sensitivity of HL60 cells to resveratrol. We also showed that resveratrol induces apoptosis through manipulating ceramide-metabolizing genes that resulted in the accumulation of ceramides in HL60 cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Alcohols / pharmacology
  • Antineoplastic Agents, Phytogenic / pharmacology*
  • Antioxidants / pharmacology
  • Apoptosis / drug effects*
  • Apoptosis / genetics
  • Caspase 3 / metabolism
  • Cell Proliferation / drug effects
  • Ceramides / pharmacology
  • Colorimetry
  • Drug Synergism
  • Gene Expression Regulation, Neoplastic / drug effects
  • HL-60 Cells / drug effects
  • HL-60 Cells / metabolism
  • Humans
  • Leukemia, Myeloid, Acute / drug therapy*
  • Leukemia, Myeloid, Acute / metabolism*
  • Membrane Potential, Mitochondrial / drug effects
  • Membrane Proteins / metabolism
  • Morpholines / pharmacology
  • Neoplasm Proteins / drug effects
  • Neoplasm Proteins / genetics
  • Neoplasm Proteins / metabolism*
  • Resveratrol
  • Reverse Transcriptase Polymerase Chain Reaction
  • Sphingolipids / metabolism*
  • Stilbenes / pharmacology*
  • Tumor Suppressor Proteins / metabolism

Substances

  • Amino Alcohols
  • Antineoplastic Agents, Phytogenic
  • Antioxidants
  • Ceramides
  • Membrane Proteins
  • Morpholines
  • N-methyl-5-(4'-pentylphenyl)-2-aminopent-4-ene-1,3-diol
  • Neoplasm Proteins
  • Sphingolipids
  • Stilbenes
  • Tumor Suppressor Proteins
  • RV 538
  • Caspase 3
  • Resveratrol