Curcumin, a hydrophobic polyphenolic compound derived from the rhizome of the herb Curcuma longa, possesses a wide range of biological applications including cancer therapy. However, its prominent application in cancer treatment is limited due to sub-optimal pharmacokinetics and poor bioavailability at the tumor site. In order to improve its hydrophilic and drug delivery characteristics, we have developed a beta-cyclodextrin (CD) mediated curcumin drug delivery system via encapsulation technique. Curcumin encapsulation into the CD cavity was achieved by inclusion complex mechanism. Curcumin encapsulation efficiency was improved by increasing the ratio of curcumin to CD. The formations of CD-curcumin complexes were characterized by Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), thermo-gravimetric analysis (TGA), scanning electron microscope (SEM), and transmission electron microscope (TEM) analyses. An optimized CD-curcumin complex (CD30) was evaluated for intracellular uptake and anti-cancer activity. Cell proliferation and clonogenic assays demonstrated that beta-cyclodextrin-curcumin self-assembly enhanced curcumin delivery and improved its therapeutic efficacy in prostate cancer cells compared to free curcumin.
Copyright 2010 Elsevier B.V. All rights reserved.