Critical examination of the uniformity requirements for single-photon emission computed tomography

Med Phys. 1991 Mar-Apr;18(2):190-7. doi: 10.1118/1.596706.

Abstract

It is generally recognized that single-photon emission computed tomography (SPECT) imposes very stringent requirements on gamma camera uniformity to prevent the occurrence of ring artifacts. The purpose of this study was to examine the relationship between nonuniformities in the planar data and the magnitude of the consequential ring artifacts in the transaxial data, and how the perception of these artifacts is influenced by factors such as reconstruction matrix size, reconstruction filter, and image noise. The study indicates that the relationship between ring artifact magnitude and image noise is essentially independent of the acquisition or reconstruction matrix sizes, but is strongly dependent upon the type of smoothing filter applied during the reconstruction process. Furthermore, the degree to which a ring artifact can be perceived above image noise is dependent on the size and location of the nonuniformity in the planar data, with small nonuniformities (1-2 pixels wide) close to the center of rotation being less perceptible than those further out (8-20 pixels). Small defects or nonuniformities close to the center of rotation are thought to cause the greatest potential corruption to tomographic data. The study indicates that such may not be the case. Hence the uniformity requirements for SPECT may be less demanding than was previously thought.

MeSH terms

  • Gamma Cameras
  • Humans
  • Image Processing, Computer-Assisted
  • Models, Structural
  • Tomography, Emission-Computed, Single-Photon*