A quantum kinetic approach for the energy relaxation in strongly coupled plasmas with different electron and ion temperatures is presented. Based on the density operator formalism, we derive a balance equation for the energies of electrons and ions connecting kinetic, correlation, and exchange energies with a quite general expression for the electron-ion energy-transfer rate. The latter is given in terms of the correlation function of density fluctuations which allows for a derivation of increasingly realistic approximation schemes including a coupled-mode expression. The equilibration of the contributions of the total energy including the species temperatures in dense hydrogen and beryllium relevant for inertial confinement fusion is investigated as an example.