Penicillin-binding protein folding is dependent on the PrsA peptidyl-prolyl cis-trans isomerase in Bacillus subtilis

Mol Microbiol. 2010 Jul 1;77(1):108-27. doi: 10.1111/j.1365-2958.2010.07188.x. Epub 2010 May 4.

Abstract

Summary The PrsA protein is a membrane-anchored peptidyl-prolyl cis-trans isomerase in Bacillus subtilis and most other Gram-positive bacteria. It catalyses the post-translocational folding of exported proteins and is essential for normal growth of B. subtilis. We studied the mechanism behind this indispensability. We could construct a viable prsA null mutant in the presence of a high concentration of magnesium. Various changes in cell morphology in the absence of PrsA suggested that PrsA is involved in the biosynthesis of the cylindrical lateral wall. Consistently, four penicillin-binding proteins (PBP2a, PBP2b, PBP3 and PBP4) were unstable in the absence of PrsA, while muropeptide analysis revealed a 2% decrease in the peptidoglycan cross-linkage index. Misfolded PBP2a was detected in PrsA-depleted cells, indicating that PrsA is required for the folding of this PBP either directly or indirectly. Furthermore, strongly increased uniform staining of cell wall with a fluorescent vancomycin was observed in the absence of PrsA. We also demonstrated that PrsA is a dimeric or oligomeric protein which is localized at distinct spots organized in a helical pattern along the cell membrane. These results suggest that PrsA is essential for normal growth most probably as PBP folding is dependent on this PPIase.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacillus subtilis / cytology
  • Bacillus subtilis / enzymology*
  • Bacillus subtilis / metabolism*
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Cell Membrane / chemistry
  • Cell Wall / chemistry
  • Cell Wall / metabolism
  • Gene Deletion
  • Genes, Bacterial
  • Genes, Essential
  • Lipoproteins / genetics
  • Lipoproteins / metabolism*
  • Magnesium / metabolism
  • Membrane Proteins / genetics
  • Membrane Proteins / metabolism*
  • Penicillin-Binding Proteins / metabolism*
  • Peptidoglycan / analysis
  • Peptidylprolyl Isomerase / genetics
  • Peptidylprolyl Isomerase / metabolism*
  • Protein Folding*
  • Protein Multimerization

Substances

  • Bacterial Proteins
  • Lipoproteins
  • Membrane Proteins
  • Penicillin-Binding Proteins
  • Peptidoglycan
  • prsA protein, bacteria
  • Peptidylprolyl Isomerase
  • Magnesium