Effects of temperature on survival, development, longevity, and fecundity of Ophraella communa (Coleoptera: Chrysomelidae), a potential biological control agent against Ambrosia artemisiifolia (Asterales: Asteraceae)

Environ Entomol. 2010 Jun;39(3):1021-7. doi: 10.1603/EN09176.

Abstract

Ophraella communa (Coleoptera: Chrysomelidae) is a leaf beetle that is unintentionally introduced in China. It is a potential biological control agent against common ragweed, Ambrosia artemisiifolia (Asterales: Asteraceae). The effects of temperature on the development and fecundity of O. communa were studied at eight constant temperature regimens (15, 20, 22, 25, 28, 30, 32, 36 degrees C) in the laboratory. The results showed that the developmental periods for egg, larva, pupa, and entire immature stages decreased in response to the increasing temperature, with the exception of 30 degrees C. The survival rates at different developmental stages were higher at 25 and 28 degrees C than at other temperatures. Ovipositional period and longevity of female shortened with the increasing temperature. The highest fecundity of female was observed to be 2,712.3 eggs/female at 28 degrees C. Life table of O. communa was constructed based on the data at 20-32 degrees C. The innate capacity for increase (r(m)), the net reproductive rate (R(0)), and the finite rate of increase (lambda) reached the maximum at 28 degrees C, with values of 0.247, 1,773.0, and 1.280, respectively. The shortest period of a generation (T) was 24.6 d at 32 degrees C, whereas the longest T value was recorded as 79.3 d at 20 degrees C. These results offer valuable insight on the establishment potential of O. communa in new environments with diverse temperature regimens and on its mass-rearing techniques in laboratory.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ambrosia*
  • Animals
  • Coleoptera / growth & development*
  • Female
  • Fertility
  • Longevity
  • Male
  • Oviparity
  • Pest Control, Biological*
  • Sex Ratio
  • Temperature*