Acute kidney injury has a high mortality and lacks specific therapies, with ischemia/reperfusion injury (IRI) being the predominant cause. Macrophages (M phi) have been used successfully in cell therapy to deliver targeted therapeutic genes in models of inflammatory kidney disease. Heme oxygenase-1 (HO-1) catalyzes heme breakdown and has important cytoprotective functions. We hypothesized that administration of M phi modified to overexpress HO-1 would protect from renal IRI. Using an adenoviral construct (Ad-HO-1), HO-1 was overexpressed in primary bone marrow-derived M phi (BMDM). In vitro Ad-HO-1 M phi showed an anti-inflammatory phenotype with increased phagocytosis of apoptotic cells (ACs) and increased interleukin (IL)-10 but reduced TNF-alpha and nitric oxide (NO) following lipopolysaccharide/interferon-gamma (IFN gamma) stimulation compared to control transduced or unmodified M phi. In vivo, intravenously (IV) injected M phi homed preferentially to the post-IRI kidney compared to uninjured control following experimental IRI. At 24 hours postinjury, despite equivalent levels of tubular necrosis, apoptosis, and capillary density between groups, the injection of Ad-HO-1 M phi resulted in preserved renal function (serum creatinine reduced by 46%), and reduced microvascular platelet deposition. These data demonstrate that genetically modified M phi improve the outcomes in IRI when administered after the establishment of structural injury, raising the prospect of targeted cell therapy to support the function of the acutely injured kidney.