The G-protein coupled receptor (GPCR) fMLP receptor (FPR) and the two receptors tyrosine kinase (RTK), the nerve growth factor (NGF) receptor TrkA and the epidermal growth factor (EGF) receptor (EGFR) are involved in reactive oxygen species (ROS), matrix metalloproteinase-9 (MMP-9) production and CD11b membrane integrin upregulation. We show that in monocytes the three receptors crosstalk each other to modulate these pro-inflammatory mediators. Tyrphostin AG1478, the EGFR inhibitor, inhibits fMLP and NGF-associated ROS production, fMLP-associated CD11b upregulation and NGF-induced TrkA phosphorylation; K252a, the NGF receptor inhibitor, inhibits fMLP or EGF-associated ROS production, CD11b expression and EGF-induced EGFR phosphorylation; cyclosporine H, the FPR inhibitor inhibits EGF or NGF-associated ROS production, EGF-associated CD11b upregulation and prevents EGFR and TrkA phosphorylation by their respective ligand EGF and NGF. In response to fMLP, TrkA phosphorylation is inhibited by the EGFR inhibitor while EGFR phosphorylation is inhibited by the TrkA inhibitor. Receptor crosstalks are Src and ERK dependent. Down-regulation of each receptor by specific siRNA suppresses the ability of the two other receptors to promote ligand-mediated ERK phosphorylation and pro-inflammatory activities including ROS, MMP-9 production and CD11b upregulation. Thus, in monocytes GPCR ligands' activity involves activation of RTK while RTK-ligands activity engages GPCR-signalling molecules.
Copyright 2010 Elsevier Inc. All rights reserved.