Photodynamic therapy (PDT) is a recent approach for the treatment of small cancerous tumours, on-surface or accessible by endoscopy in which a dye (usually a tetrapyrrolic macrocycle) absorbs light and generates cytotoxic reactive oxygen species leading to cellular damage. Retinoblastoma (Rb) is a rare intraocular tumour of childhood. All the multifocal forms are hereditary and constitute a syndrome of genetic predisposition in the cancer. The current treatments with etoposide or carboplatine expose the patient to the late risk of second cancer. The use of PDT as cancer therapy is particularly attractive due to the use of few mutagenic and non-toxic photosensitizers (PS) prior light excitation and to the localized tumour illumination. The photoefficiency towards Rb of a glycoconjugated porphyrin is discussed and compared with the results obtained with a second-generation photosensitizer, the Foscan. Some in vivo results on an animal model of Rb are presented by a point of view of photoefficiency, biodistribution, pharmacokinetic and longitudinal follow-up of the PDT effect using a new non-invasive method of magnetic resonance imaging of real-time. Photodynamic treatments in association with non-invasive sodium imaging open ways for new treatment tailoring or treatment individualization of retinoblastoma in clinic.
Copyright 2010 Elsevier Masson SAS. All rights reserved.