Regional lung volume changes during high-frequency oscillatory ventilation

Pediatr Crit Care Med. 2010 Sep;11(5):610-5. doi: 10.1097/PCC.0b013e3181c51690.

Abstract

Objective: To investigate regional lung volume changes occurring during an inflation-deflation maneuver using high-frequency oscillatory ventilation.

Design: Prospective animal trial.

Setting: Animal research laboratory.

Subjects: Six Yorkshire swine.

Interventions: Electrical impedance tomography was used to quantify regional ventilation during high-frequency oscillatory ventilation. The electrical impedance tomography-derived center of ventilation was used to describe the distribution of regional ventilation, whereas spectral analysis was used to describe regional ventilation-induced impedance changes. Lung injury was induced using surfactant lavage. Animals were transitioned to high-frequency oscillatory ventilation and a slow inflation-deflation maneuver was performed by changing mean airway pressure by 5 cm H2O every 15 mins to a maximum mean airway pressure of 40 cm H2O.

Measurements and main results: The induction of lung injury was associated with a significant shift of the center of ventilation toward nondependent areas and an increase in shunt fraction (p < .001). During the following inflation-deflation maneuver using high-frequency oscillatory ventilation, inflation was associated with a shift of the center of ventilation from nondependent to dependent areas. Center of ventilation was significantly correlated with the shunt fraction (p < .001). Analyzing different lung layers along the gravitational axis separately, nondependent lung areas showed significantly decreased regional ventilation-induced impedance changes at higher pressures, suggesting overdistension, whereas dependent lung areas showed increased impedance changes, suggesting recruitment. The reverse was observed during deflation (all p < .05).

Conclusions: The center of ventilation during high-frequency oscillatory ventilation correlated with oxygenating efficiency as measured by the shunt fraction. Lung recruitment during high-frequency oscillatory ventilation produced a significant shift of regional ventilation toward dependent areas of the lung and led to overdistension of nondependent areas.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Disease Models, Animal
  • Electric Impedance
  • High-Frequency Ventilation*
  • Lung Volume Measurements
  • Swine
  • Tomography
  • Ventilator-Induced Lung Injury / physiopathology*