Background: Enhanced S-cone syndrome (ESCS) is an autosomal recessive retinal disorder characterized by an increased number of S-cones over L/M cones and rods. Mutations in the NR2E3 gene, encoding a photoreceptor-specific nuclear receptor, are identified in patients with ESCS. The purpose of this study is to report the ophthalmic features of a 25-year-old Portuguese male with a typical ESCS phenotype and a novel homozygous NR2E3 mutation.
Methods: The patient underwent a detailed ophthalmic examination including fundus photography, fluorescein angiography (FAF), fundus autofluorescence imaging (FAI), and spectral domain optical coherence tomography (SD-OCT). Full-field electroretinography (ERG), S-cone ERG, and multifocal ERG were performed. Mutation screening of the NR2E3 gene was performed with polymerase chain reaction amplification and direct sequencing.
Results: The patient had poor visual acuity but good color vision. Funduscopy showed degenerative changes from the vascular arcades to the midperipheral retina. The SD-OCT revealed macular schisis and cystoid changes that had no fluorescein leakage. The posterior pole showed diffusely increased autofluorescence compared with eccentric areas in both eyes. International-standard full-field ERG showed the typical pathognomonic changes associated with ESCS and the short-wavelength flash ERG was simplified, delayed, and similar to the standard photopic flash ERG. Multifocal ERG showed widespread delay and reduction. Genetic analysis revealed a novel homozygous mutation (p.C83Y), which resides in the second zinc finger of the DNA-binding domain.
Conclusions: This homozygous mutation is likely to affect binding to target DNA sites, resulting in a non-functional behavior of NR2E3 protein. It is associated with a typical form of ESCS with a nondetectable rod response and reduced/delayed mfERG responses at all eccentricities.