The presence of human immunodeficiency virus (HIV)-infected macrophages in the parenchyma of central nervous system is an hallmark of acquired immunodeficiency syndrome-related neuroinflammation. Once penetrated the blood-brain barrier (BBB), macrophages closely interact with astrocytes, beginning with those lying beneath the BBB endothelium. By investigating the consequences of the cell-cell interaction between HIV-infected macrophages and astrocytes, we observed that the HIV-1 expression in macrophagic cells correlated with increased chemotactic activity in supernatants of astroglial cells. Gene array analysis revealed an impressive increase in the transcription of the gene for the CCL2/MCP-1 chemokine in astroglial cells isolated from HIV-1-infected co-cultures compared with cells from uninfected co-cultures. This phenomenon coupled with the increase in CCL2 release and depended on the cell-cell contact. In addition, it was a consequence of the HIV-1-induced enhancement of membrane-associated tumor necrosis factor-α in macrophagic cells, and correlated with increased levels of nuclear factor kappaB activation in astroglial cells. These observations could mirror a mechanism of recruitment of leukocytes through the BBB, likely contributing to the increase in both viral load and inflammation in central nervous system of HIV-infected patients.