Effect of norepinephrine on diaphragm contractility and blood flow

J Appl Physiol (1985). 1990 Dec;69(6):2019-28. doi: 10.1152/jappl.1990.69.6.2019.

Abstract

Recent studies have shown that diaphragm fatigue can be reversed by mechanical augmentation of phrenic arterial flow. The purpose of the present experiment was to determine whether it was possible to pharmacologically augment diaphragm blood flow and reverse fatigue by the administration of norepinephrine. Four groups of studies were performed, all employing our previously described in situ isometric canine diaphragm strip preparation (Supinski et al., J. Appl. Physiol. 60: 1789-1796, 1986). Group I studies examined the effects of norepinephrine on the contractility of the nonfatigued diaphragm in normotensive dogs, group II studies examined the effects of this drug on the contractility of the fatigued diaphragm in normotensive animals, and group III studies examined the effect of this drug on the contractility of the fatigued diaphragm in hypotensive animals. Group IV studies examined the effect of norepinephrine in normotensive animals in which the phrenic artery was cannulated and pump perfused at constant flow. Fatigue was induced in group II, III, and IV studies by rhythmically stimulating the diaphragm via intramuscular electrodes. Norepinephrine had no effect on the contractility of the nonfatigued diaphragm (group I). In normotensive (group II) and hypotensive animals (group III), norepinephrine elicited dramatic increases in arterial blood pressure and phrenic arterial flow and produced a significant upshift in the force-frequency curve of the fatigued diaphragm. However, when phrenic flow was held constant (group IV experiments), norepinephrine failed to augment the contractility of the fatigued diaphragm. These results indicate that 1) norepinephrine can increase phrenic blood flow and augment the contractility of the fatigued diaphragm in both normotensive and hypotensive conditions and 2) this effect of norepinephrine to partially reverse fatigue is secondary to its action to augment diaphragmatic blood flow.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Blood Pressure / drug effects
  • Cardiac Output / drug effects
  • Diaphragm
  • Dogs
  • In Vitro Techniques
  • Isometric Contraction / drug effects*
  • Muscles / blood supply
  • Muscles / drug effects
  • Muscles / physiology*
  • Norepinephrine / pharmacology*
  • Reference Values
  • Regional Blood Flow / drug effects

Substances

  • Norepinephrine