We have used nanosecond bursts of x-rays emitted from a laser-produced plasma, comprised of a mixture of mid-Z elements, to produce a quasiwhite-light spectrum suitable for performing Laue diffraction from single crystals. The laser-produced plasma emits x-rays ranging in energy from 3 to in excess of 10 keV, and is sufficiently bright for single shot nanosecond diffraction patterns to be recorded. The geometry is suitable for the study of laser-shocked crystals, and single-shot diffraction patterns from both unshocked and shocked silicon crystals are presented.