Resolution theory, and static and frequency-dependent cross-talk in piezoresponse force microscopy

Nanotechnology. 2010 Oct 8;21(40):405703. doi: 10.1088/0957-4484/21/40/405703. Epub 2010 Sep 8.

Abstract

Probing the functionality of materials locally by means of scanning probe microscopy (SPM) requires a reliable framework for identifying the target signal and separating it from the effects of surface morphology and instrument non-idealities, e.g. instrumental and topographical cross-talk. Here we develop a linear resolution theory framework in order to describe the cross-talk effects, and apply it for elucidation of frequency-dependent cross-talk mechanisms in piezoresponse force microscopy. The use of a band excitation method allows electromechanical/electrical and mechanical/topographic signals to be unambiguously separated. The applicability of a functional fit approach and multivariate statistical analysis methods for identification of data in band excitation SPM is explored.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.