The present application is based on the use of carbon nanotubes (CNTs) for biomolecular analysis using electrochemiluminescence (ECL) detection technique [1]-[9]. For this purpose we have grown self standing cylinder-shaped blocks of multi-wall CNTs (MWCNTs) by means of a catalytic chemical vapour deposition system, fed by camphor and ferrocene gases. The blocks were subsequently back-contacted and encapsulated into epoxy resin as electrical insulator and sealant, for their use as voltammetric electrodes. A ruthenium-complex solution has been used as ECL label. It has been observed a periodical light emission that lasts for hundreds of cycles, likely due to the CNTs structure. Thanks to a data-processing algorithm which exploits this behavior, the experiments show that it is possible to obtain a great increase in detection limit as compared to the common working metal electrodes (for example Au or Pt).