Video-rate molecular imaging in vivo with stimulated Raman scattering

Science. 2010 Dec 3;330(6009):1368-70. doi: 10.1126/science.1197236.

Abstract

Optical imaging in vivo with molecular specificity is important in biomedicine because of its high spatial resolution and sensitivity compared with magnetic resonance imaging. Stimulated Raman scattering (SRS) microscopy allows highly sensitive optical imaging based on vibrational spectroscopy without adding toxic or perturbative labels. However, SRS imaging in living animals and humans has not been feasible because light cannot be collected through thick tissues, and motion-blur arises from slow imaging based on backscattered light. In this work, we enable in vivo SRS imaging by substantially enhancing the collection of the backscattered signal and increasing the imaging speed by three orders of magnitude to video rate. This approach allows label-free in vivo imaging of water, lipid, and protein in skin and mapping of penetration pathways of topically applied drugs in mice and humans.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Administration, Cutaneous
  • Animals
  • Capillaries
  • Dimethyl Sulfoxide / administration & dosage
  • Dimethyl Sulfoxide / pharmacokinetics
  • Epidermis / chemistry
  • Epidermis / metabolism
  • Erythrocytes / physiology
  • Humans
  • Imaging, Three-Dimensional
  • Light
  • Lipids
  • Male
  • Mice
  • Mice, Nude
  • Molecular Imaging / methods*
  • Skin / blood supply
  • Skin / chemistry*
  • Skin / metabolism*
  • Spectrum Analysis, Raman / methods*
  • Time Factors
  • Vitamin A / administration & dosage
  • Vitamin A / pharmacokinetics
  • Water

Substances

  • Lipids
  • Water
  • Vitamin A
  • Dimethyl Sulfoxide