Background: Skin cells produce soluble factors which influence keratinocyte proliferation, angiogenesis, nerve innervation and immunocyte response.
Objective: To test the hypothesis that epidermal-dermal interactions influence neural outgrowth, vascular survival, immunocyte recruitment and keratinocyte proliferation.
Methods: We genetically manipulated the epidermis to express excess vascular endothelial growth factor (VEGF) and/or angiopoietin-1 (Ang1) and then examined the epidermal and dermal phenotypes. We compared these findings with those occurring following overexpression of the Ang1 receptor Tie2 in endothelial cells or keratinocytes.
Results: Keratinocyte-overexpression of Ang1 resulted in increased epidermal thickness compared to control littermates. Keratinocyte-specific overexpression of Ang1 or VEGF increased dermal angiogenesis compared to control animals and combined Ang1-VEGF lead to further increases. Cutaneous leukocyte examination revealed increases in CD4(+) T cell infiltration in mice with keratinocyte-specific overexpression of Ang1, VEGF and Ang1-VEGF combined; in contrast only keratinocyte-specific Ang1 overexpression increased cutaneous F4/80(+) macrophage numbers. Interestingly, combined keratinocyte-derived Ang1-VEGF overexpression reduced significantly the number of F4/80(+) and Cd11c(+) cells compared to mice overexpressing epidermal Ang1 alone. Endothelial cell-specific Tie2 overexpression increased dermal angiogenesis but failed to influence the epidermal and immune cell phenotypes. Keratinocyte-specific Tie2 expressing mice had the highest levels of CD4(+), CD8(+) and CD11c(+) cell numbers and acanthosis compared to all animals. Finally, increases in the number of cutaneous nerves were found in all transgenic mice compared to littermate controls.
Conclusion: These findings demonstrate that change to one system (vascular or epidermal) results in change to other cutaneous systems and suggest that individual molecules can exert effects on multiple systems.
Copyright © 2010 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.