Acetylcholine (ACh), acting at muscarinic ACh receptors (mAChRs), modulates the excitability and synaptic connectivity of hippocampal pyramidal neurons. CA1 pyramidal neurons respond to transient ("phasic") mAChR activation with biphasic responses in which inhibition is followed by excitation, whereas prolonged ("tonic") mAChR activation increases CA1 neuron excitability. Both phasic and tonic mAChR activation excites pyramidal neurons in the CA3 region, yet ACh suppresses glutamate release at the CA3-to-CA1 synapse (the Schaffer-collateral pathway). Using mice genetically lacking specific mAChRs (mAChR knockout mice), we identified the mAChR subtypes responsible for cholinergic modulation of hippocampal pyramidal neuron excitability and synaptic transmission. Knockout of M1 receptors significantly reduced, or eliminated, most phasic and tonic cholinergic responses in CA1 and CA3 pyramidal neurons. On the other hand, in the absence of other G(q)-linked mAChRs (M3 and M5), M1 receptors proved sufficient for all postsynaptic cholinergic effects on CA1 and CA3 pyramidal neuron excitability. M3 receptors were able to participate in tonic depolarization of CA1 neurons, but otherwise contributed little to cholinergic responses. At the Schaffer-collateral synapse, bath application of the cholinergic agonist carbachol suppressed stratum radiatum-evoked excitatory postsynaptic potentials (EPSPs) in wild-type CA1 neurons and in CA1 neurons from mice lacking M1 or M2 receptors. However, Schaffer-collateral EPSPs were not significantly suppressed by carbachol in neurons lacking M4 receptors. We therefore conclude that M1 and M4 receptors are the major mAChR subtypes responsible for direct cholinergic modulation of the excitatory hippocampal circuit.