Objective: This study seeks to determine whether scores of a short questionnaire assessing subjective daytime sleepiness (Epworth Sleepiness Scale [ESS]) are associated with blood pressure (BP) level, BP profile, and prevalence of related coronary artery disease (CAD) and cerebrovascular disease (CVD) in obstructive sleep apnea (OSA) patients diagnosed by polysomnography (PSG).
Methods: Twenty university hospital sleep centers in China mainland were organized by the Chinese Medical Association to participate in this study. Between January 2004 and April 2006, 2,297 consecutive patients (aged 18-85 years; 1,981 males and 316 females) referred to these centers were recruited. BP assessments were evaluated at four time points (daytime, evening, nighttime, and morning) under standardized conditions. Anthropometric measurements, medical history of hypertension, CAD, and CVD were collected. ESS score was calculated for each participant and at the night of BP assessment, nocturnal PSG was performed and subjects were classified into four groups based on the apnea-hypopnea index (AHI) from PSG as follows: control group (control, n = 213) with AHI < 5; mild sleep apnea (mild, n = 420) with AHI ≥ 5 and <15; moderate sleep apnea (moderate, n = 460) with AHI ≥ 15 and <30; and severe sleep apnea (severe, n = 1,204) with AHI ≥ 30. SPSS 11.5 software package was used for the relationships between ESS and BP profile and prevalence of CAD and CVD.
Results: ESS is correlated positively with average daytime, nighttime, evening, and morning BP before and even after controlling for confounding effects of age, sex, BMI, AHI, and nadir nocturnal oxygen saturation (before--r = 0.182, 0.326, 0.245, and 0.329, respectively, all P values < 0.001; after--r = 0.069, 0.212, 0.137, and 0.208, respectively, all P values < 0.001). In the severe group, nighttime, evening, morning average BPs (ABPs), the ratio of nighttime/daytime average BP (ratio of nighttime average BP to daytime average BP), and prevalence of hypertension, drug-resistant hypertension (R-HTN), isolated nighttime hypertension (IN-HTN), CAD, and CVD in excessive daytime sleepiness (EDS, ESS ≥ 11) subjects are higher than those in non-EDS (ESS 0-10; t/χ(2) = -8.388, -6.207, -8.607, -5.901, 12.742, 38.980, 16.343, 59.113, and 67.113, respectively; all P values < 0.05). For EDS subjects in the moderate group but not in the control and mild group, nighttime ABP and the ratio of nighttime/daytime average BP are higher (t = -2.086 and -3.815, respectively, all P values < 0.05). Linear fitting with ESS and the ratio of nighttime/daytime average BP shows a positive correlation (r(2) = 0.049, P < 0.001).
Conclusions: In severe OSA patients with comparable AHI, EDS may identify a subset of individuals with OSA at higher risk of hypertension, R-HTN, IN-HTN, CAD, and CVD. Overall, nighttime ABP seems to be more sensitive to be influenced by EDS than other ABP parameters. Future studies should investigate the potential dose-effect relationship between EDS and hypertension and the possibility that diagnosis and treatment of EDS could aid in BP reduction and ultimately in decreased morbidity and mortality from cardiovascular and cerebrovascular complications (TMUIRB20010002 at www.clinicaltrials.gov ).