The impact of nanoparticle ligand density on dendritic-cell targeted vaccines

Biomaterials. 2011 Apr;32(11):3094-105. doi: 10.1016/j.biomaterials.2010.12.054. Epub 2011 Jan 22.

Abstract

Dendritic-cell (DC) targeted antigen delivery systems hold promise for enhancing vaccine efficacy and delivery of therapeutics. However, it is not known how the number and density of targeting ligands on such systems may affect DC function and subsequent T cell response. We modified the surface of biodegradable nanoparticles loaded with antigen with different densities of the mAb to the DC lectin DEC-205 receptor and assessed changes in the cytokine response of DCs and T cells. DEC-205 targeted nanoparticles unexpectedly induced a differential cytokine response that depended on the density of ligands on the surface. Strikingly, nanoparticle surface density of DEC-205 mAb increased the amount of anti-inflammatory, IL-10, produced by DCs and T cells. Boosting mice with DEC-205 targeted OVA-nanoparticles after immunization with an antigen in CFA induced a similar pattern of IL-10 response. The correlation between DC production of IL-10 as a function of the density of anti-DEC-205 is shown to be due to cross-linking of the DEC-205 receptor. Cross-linking also increased DC expression of the scavenger receptor CD36, and blockade of CD36 largely abrogated the IL-10 response. Our studies highlight the importance of target ligand density in the design of vaccine delivery systems.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Antigens, CD / administration & dosage
  • Antigens, CD / immunology*
  • Cytokines / metabolism
  • Dendritic Cells / immunology*
  • Flow Cytometry
  • Interleukin-10 / metabolism
  • Lectins, C-Type / administration & dosage
  • Lectins, C-Type / immunology*
  • Mice
  • Mice, Inbred C57BL
  • Microscopy, Confocal
  • Minor Histocompatibility Antigens
  • Nanoparticles / chemistry*
  • Receptors, Cell Surface / administration & dosage
  • Receptors, Cell Surface / immunology*
  • T-Lymphocytes / metabolism
  • Vaccines / administration & dosage
  • Vaccines / immunology*

Substances

  • Antigens, CD
  • Cytokines
  • DEC-205 receptor
  • Lectins, C-Type
  • Minor Histocompatibility Antigens
  • Receptors, Cell Surface
  • Vaccines
  • Interleukin-10