Androgens are involved in the development of several tissues, including prostate, skeletal muscle, bone marrow, hair follicles, and brain. Most of the biological effects of the androgens are mediated through an intracellular transcription factor, the androgen receptor (AR) at the level of gene regulation. Several types of mutations in the AR gene have been linked to endocrine dysfunctions. The expansion of CAG codon repeat, coding for a polyglutamine (PolyQ) tract in the N-terminal domain is one such mutation. The polyQ chain length impacts AR's ability to interact with critical coregulators, which in turn modulates its transcriptional efficacy. Pathologic manifestations of variations in polyQ chain length have been associated with prostate cancer susceptibility, and the Spinal and Bulbar Muscular Atrophy (SBMA), a neurodegenerative disease. In this review article, we discuss multiple aspects of the role of polyQ chain length in the actions of the AR, their importance in prostate cancer development and progression, and SBMA with an aim to understand the underlying mechanisms involved in these diseases, which can be targeted for future therapeutic approaches.
Copyright © 2011 Elsevier Inc. All rights reserved.