A new parylene-based microfabrication process is presented for neural recording and drug delivery applications. We introduce a large design space for electrode placement and structural flexibility with a six mask process. By using chemical mechanical polishing, electrode sites may be created top-side, back-side, or on the edge of the device having three exposed sides. Added surface area was achieved on the exposed edge through electroplating. Poly(3,4-ethylenedioxythiophene) (PEDOT) modified edge electrodes having an 85-μm(2) footprint resulted in an impedance of 200 kΩ at 1 kHz. Edge electrodes were able to successfully record single unit activity in acute animal studies. A finite element model of planar and edge electrodes relative to neuron position reveals that edge electrodes should be beneficial for increasing the volume of tissue being sampled in recording applications.