A quantitative comparison of cell-type-specific microarray gene expression profiling methods in the mouse brain

PLoS One. 2011 Jan 27;6(1):e16493. doi: 10.1371/journal.pone.0016493.

Abstract

Expression profiling of restricted neural populations using microarrays can facilitate neuronal classification and provide insight into the molecular bases of cellular phenotypes. Due to the formidable heterogeneity of intermixed cell types that make up the brain, isolating cell types prior to microarray processing poses steep technical challenges that have been met in various ways. These methodological differences have the potential to distort cell-type-specific gene expression profiles insofar as they may insufficiently filter out contaminating mRNAs or induce aberrant cellular responses not normally present in vivo. Thus we have compared the repeatability, susceptibility to contamination from off-target cell-types, and evidence for stress-responsive gene expression of five different purification methods--Laser Capture Microdissection (LCM), Translating Ribosome Affinity Purification (TRAP), Immunopanning (PAN), Fluorescence Activated Cell Sorting (FACS), and manual sorting of fluorescently labeled cells (Manual). We found that all methods obtained comparably high levels of repeatability, however, data from LCM and TRAP showed significantly higher levels of contamination than the other methods. While PAN samples showed higher activation of apoptosis-related, stress-related and immediate early genes, samples from FACS and Manual studies, which also require dissociated cells, did not. Given that TRAP targets actively translated mRNAs, whereas other methods target all transcribed mRNAs, observed differences may also reflect translational regulation.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brain / cytology
  • Brain / metabolism*
  • Gene Expression Profiling / methods*
  • Gene Expression Profiling / standards*
  • Mice
  • Microarray Analysis / methods
  • Microarray Analysis / standards
  • Neurons / metabolism
  • Protein Biosynthesis
  • RNA, Messenger / analysis
  • RNA, Messenger / isolation & purification
  • Reproducibility of Results
  • Tissue Distribution
  • Transcription, Genetic

Substances

  • RNA, Messenger