Recombinant dimeric IgA antibodies against the epidermal growth factor receptor mediate effective tumor cell killing

J Immunol. 2011 Mar 15;186(6):3770-8. doi: 10.4049/jimmunol.1003082. Epub 2011 Feb 11.

Abstract

Dimeric IgA Abs contribute significantly to the humoral part of the mucosal immune system. However, their potential as immunotherapeutic agent has hardly been explored. In this article, we describe the production, purification, and functional evaluation of recombinant dimeric IgA against the epidermal growth factor receptor. Human joining chain-containing IgA was produced by nonadherent Chinese hamster ovarian (CHO)-K1 cells under serum-free conditions. Purification by anti-human κ and anti-His-tag affinity, as well as size exclusion chromatography, resulted in a homogenous preparation of highly pure IgA dimers. Functional studies demonstrated dimeric IgA to be at least as effective as monomeric IgA in triggering Ab-dependent cellular cytotoxicity by isolated monocytes or polymorphonuclear cell and in human whole-blood assays. Importantly, dimeric IgA was more effective in F(ab)-mediated killing mechanisms, such as inhibition of ligand binding, receptor downmodulation, and growth inhibition. Furthermore, only dimeric but not monomeric IgA or IgG was directionally transported by the polymeric Ig receptor through an epithelial cell monolayer. Together, these studies demonstrate that recombinant dimeric IgA Abs recruit a distinct repertoire of effector functions compared with monomeric IgA or IgG1 Abs.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / metabolism
  • Antineoplastic Agents / pharmacology*
  • Apoptosis / immunology
  • Cell Death / immunology
  • Cell Line
  • Cell Line, Tumor
  • Cell Membrane Permeability / immunology
  • Colonic Neoplasms / metabolism
  • Colonic Neoplasms / pathology
  • Colonic Neoplasms / therapy
  • Cricetinae
  • Dogs
  • ErbB Receptors / immunology*
  • Humans
  • Immunoglobulin A / chemistry
  • Immunoglobulin A / metabolism
  • Immunoglobulin A / pharmacology*
  • Immunoglobulin Isotypes / chemistry
  • Immunoglobulin Isotypes / pharmacology
  • Kidney / cytology
  • Kidney / immunology
  • Kidney / metabolism
  • Mice
  • Protein Multimerization
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / metabolism
  • Recombinant Proteins / pharmacology

Substances

  • Antineoplastic Agents
  • Immunoglobulin A
  • Immunoglobulin Isotypes
  • Recombinant Proteins
  • EGFR protein, human
  • ErbB Receptors