Syntheses of organic molecule-DNA hybrid structures

ACS Nano. 2011 Mar 22;5(3):2067-74. doi: 10.1021/nn1032455. Epub 2011 Feb 16.

Abstract

Investigation of robust and efficient pathways to build DNA-organic molecule hybrid structures is fundamentally important to realize controlled placement of single molecules for potential applications, such as single-molecule electronic devices. Herein, we report a systematic investigation of synthetic processes for preparing organic molecule-DNA building blocks and their subsequent elongation to generate precise micrometer-sized structures. Specifically, optimal cross-coupling routes were identified to enable chemical linkages between three different organic molecules, namely, polyethylene glycol (PEG), poly(p-phenylene ethynylene) (PPE), and benzenetricarboxylate, with single-stranded (ss) DNA. The resulting DNA-organic molecule hybrid building blocks were purified and characterized by both denaturing gel electrophoresis and electrospray ionization mass spectrometry (ESI-MS). The building blocks were subsequently elongated through both the DNA hybridization and ligation processes to prepare micrometer-sized double-stranded (ds) DNA-organic molecule hybrid structures. The described synthetic procedures should facilitate future syntheses of various hybrid DNA-based organic molecular structures.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Crystallization / methods*
  • DNA / chemistry*
  • DNA / ultrastructure*
  • Materials Testing
  • Nanostructures / chemistry*
  • Nanostructures / ultrastructure*
  • Organic Chemicals / chemistry*
  • Particle Size

Substances

  • Organic Chemicals
  • DNA