In divergent-beam computed tomography (CT), sparse angular sampling frequently leads to conspicuous streak artifacts. In this paper, we propose a novel non-local means (NL-means) based iterative-correction projection onto convex sets (POCS) algorithm, named as NLMIC-POCS, for effective and robust sparse angular CT reconstruction. The motivation for using NLMIC-POCS is that NL-means filtered image can produce an acceptable priori solution for sequential POCS iterative reconstruction. The NLMIC-POCS algorithm has been tested on simulated and real phantom data. The experimental results show that the presented NLMIC-POCS algorithm can significantly improve the image quality of the sparse angular CT reconstruction in suppressing streak artifacts and preserving the edges of the image.
Copyright © 2011 Elsevier Ltd. All rights reserved.