Li+ ion emission from a hot-plate alumina-silicate source stimulated by flash heating with an infrared laser

Rev Sci Instrum. 2011 Feb;82(2):023304. doi: 10.1063/1.3555334.

Abstract

The Neutralized Drift Compression Experiment-II accelerator under construction at Lawrence Berkeley National Laboratory has been designed to employ a lithium-doped alumino-silicate (Al-Si) hot-plate surface-ionization ion source. In order to achieve the design 1 mA∕cm(2) current density, the emitter must be constantly kept at a high temperature, leading to the accelerated loss of Li material as ions or neutrals. As a result, the estimated lifetime of the source is 50 h. This lifetime can be extended if the source is kept at low temperature during standby, and pulse heated to the high temperature during the ion extraction phase only. A pulsed heating technique based on an infrared laser (CO(2) gas discharge, λ = 10.6 μm) is described in this paper. The feasibility of ion current emission stimulated by flash heating with an infrared (IR) laser was demonstrated. High repeatability of the laser-stimulated ion current was observed, creating an opportunity for modulation and gating of the ion current with a laser pulse. It was found that with the available low power (≈115 W∕cm(2)) IR laser, current densities as high as 0.8 mA∕cm(2) could be achieved with a 2.8 mm diameter source. Various approaches for scaling to a larger (10 cm diameter) source and the application of short pulse, high power lasers are discussed. The results and conclusions of this paper may apply to various species of hot-plate ion sources.