Yes-associated protein (YAP) regulates DNA damage and chemosensitivity, as well as functioning as a pro-growth, cell size regulator. For both of its roles, regulation by phosphorylation is crucial. We undertook an in vitro screen to identify novel YAP kinases to discover new signaling pathways to better understand YAP's function. We identified JNK1 and JNK2 as robust YAP kinases, as well as mapped multiple sites of phosphorylation. Using inhibitors and siRNA, we showed that JNK specifically phosphorylates endogenous YAP in a number of cell types. We show that YAP protects keratinocytes from UV irradiation but promotes UV-induced apoptosis in a squamous cell carcinoma. We defined the mechanism for this dual role to be YAP's ability to bind and stabilize the pro-proliferative ΔNp63α isoform in a JNK-dependent manner. Our report indicates that an evaluation of the expression of the different isoforms of p63 and p73 is crucial in determining YAP's function.