The hypoxia-inducible factor (HIF) prolyl hydroxylase (PHD) enzymes represent novel targets for the treatment of anemia, ulcerative colitis, and ischemic and metabolic disease inter alia. We have identified a novel small-molecule inhibitor of PHD, 1-(5-chloro-6-(trifluoromethoxy)-1H-benzoimidazol-2-yl)-1H-pyrazole-4-carboxylic acid (JNJ-42041935), through structure-based drug design methods. The pharmacology of JNJ-42041935 was investigated in enzyme, cellular, and whole-animal systems and was compared with other compounds described in the literature as PHD inhibitors. JNJ-42041935, was a potent (pK(I) = 7.3-7.9), 2-oxoglutarate competitive, reversible, and selective inhibitor of PHD enzymes. In addition, JNJ-42041935 was used to compare the effect of selective inhibition of PHD to intermittent, high doses (50 μg/kg i.p.) of an exogenous erythropoietin receptor agonist in an inflammation-induced anemia model in rats. JNJ-42041935 (100 μmol/kg, once a day for 14 days) was effective in reversing inflammation-induced anemia, whereas erythropoietin had no effect. The results demonstrate that JNJ-42041935 is a new pharmacological tool, which can be used to investigate PHD inhibition and demonstrate that PHD inhibitors offer great promise for the treatment of inflammation-induced anemia.