An integrated field-portable surface enhanced Raman scattering (SERS) sensing system has been developed and evaluated for quantitative analysis of energetics such as perchlorate (ClO(4)(-)) and trinitrotoluene (TNT) at environmentally relevant concentrations and conditions. The detection system consists of a portable Raman spectrometer equipped with an optical fiber probe that is coupled with novel elevated gold bowtie nanostructural arrays as a sensitive and reproducible SERS substrate. Using the standard addition technique, we show that ClO(4)(-) and TNT can be quantified at concentrations as low as 0.66 mg L(-1) (or ~6.6 µM) and 0.20 mg L(-1) (~0.9 µM), respectively, in groundwater samples collected from selected military sites. This research represents the first step toward the development of a field SERS sensor which may permit rapid, in situ screening and analysis for various applications including national security, chemical, biological and environmental detection.